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Continuum analysis of an avalanche model for solar flares
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We investigate the continuum limit of a class of self-organized critical lattice models for solar flares. Such
models differ from the classical numerical sandpile model in their formulation of stability criteria in terms of
the curvature of the nodal field, and are known to belong to a different universality class. A fourth-order
nonlinear hyperdiffusion equation is reverse engineered from the discrete model’s redistribution rule. A dy-
namical renormalization-group analysis of the equation yields scaling exponents that compare favorably with
those measured in the discrete lattice model within the relevant spectral range dictated by the sizes of the
domain and the lattice grid. We argue that the fourth-order nonlinear diffusion equation that models the
behavior of the discrete model in the continuum limit is, in fact, compatible with magnetohydrodynamics
(MHD) of the flaring phenomenon in the regime of strong magnetic field and the effective magnetic diffusivity
characteristic of strong MHD turbulence.
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I. INTRODUCTION: SOLAR FLARES AS AVALANCHES sheets. Order-of-magnitude estimates of the energy released
by such dissipative events are around“ldrg, about nine

With the so-called solar neutrino problem now turnedorders of magnitude smaller than a typical large solar flare.
over to particle physicists, coronal heating remains arguablyhus the name “nanoflare” was coined by Parkgt, who
the grand unsolved problem of the contemporary solar physnoreover conjectured that the collective energy released by
ics. There is general agreement that the energy source maithe ensemble of nanoflares continuously occurring through-
taining the temperature of the coronal plasma in excess giut the magnetized corona is a sufficient energy input for
10° K against radiative and conductive losses is, ultimatelycoronal heating.
the mechanical energy associated with convective fluid mo- Although it was not originally emphasized in Parker’s
tions. However, the manner in which this mechanical energgoronal heating model, his picture of an externally stressed,
is converted to thermal energy within the corona has yet t¢omplexly tangled coronal magnetic field incorporates all re-
be elucidated. quired ingredient for a self-organized criticé6O0 ava-

One very attractive mechanism was proposed nearly twéanche model(1) an open physical system driven by slow,
decades ago by Parkée.g., Refs[1-3)). In his picture, the external forcing;(2) subject to a self-stabilizing threshold
mechanical energy is first stored as magnetic energy withiistability; and(3) leading to localized redistribution of an
photospherically anchored coronal magnetic structties  associated dynamical variablé,5]. The dissipation of the
“coronal loops” ubiquitous in the coronaand subsequently
transferred to the plasma by reconnection mediateditu
dissipation of the magnetic field. The general idea is illus- _
trated in Fig. 1. The left panel shows a “straightened” coro-
nal loop, where the upper and lower bounding surfaces cor- A

t=t,

respond to the two regions of the solar photosphere where B
the loop is anchored. At photospheric levels, the magnetic e
field is too weak to resist the stochastic horizontal fluid mo- D
tions associated with convection and granulation, so that the E

footpoints of the initially uniform magnetic field linest ( — === |—
=ty) are randomly shuffled. After many flow turnover times
(()tnet;)r;ott?]eerﬂeAlg ':Ihneescoergcrjlalljaiégqgﬁggucmgsngexg?sngq FIG. 1. Buildup of tangential discontinuitidsites labeled A,”

’ . . B,” etc., on right panel in response to boundary forcing of an
relax to a force-free Sta.te n reSponS? to th.'s bou_ndary forc|'nitially uniform magnetic field(left pane), as envisioned within
ing, the current sheets inexorably build up in regions wher

. . . . . Parker’s conjecture of coronal heating by nanoflares. The structure
field lines kink around one another. In view of the high elec-g, the feft panel is an idealized representation of a straightened

trical conductivity of the coronal plasma, these sheets beggronal magnetic loop anchored in the solar photosphere, the latter
come very thin and pervaded by very intense electrical CUreorresponding to the upper and lower bounding “platésse text
rents, which eventually become subject to an assortment afeconnection-mediated dissipative events atGitfect the mag-
plasma instabilities. Magnetic reconnection then sets inpetic field at neighboring sitesA(B,D,E), any of which in turn
leading to the local release of magnetic energy and recomossibly undergoing dissipative reconfiguration, leading to an ava-
figuration of the magnetic field in and around the dissipatinganche of dissipative events cascading through the system.
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small current sheet®.g., site ‘C” on Fig. 1), which Parker LH91 and LHMB versions of the solar flare avalanche
associates with nanoflares, can alter the physical conditionmodel. In Sec. lll, we carry out a dynamical renormalization-
at neighboring current sheefsitesA, B, D, andE), possibly  group (DRG) analysis of our hyperdiffusion equation and
triggering further dissipative events at these locations, and s@etermine the invariants of the DRG transformation. Then in
on across the whole stressed coronal structure. Parker®ec. 1V, these invariants are used to derive the power-law
physical picture can thus be readily reinterpreted as a generglopes of several quantities and these slopes are compared to
avalanche model for solar flares of all sizes. the results from the avalanche models. The good agreement
Inspired by Parker’s nanoflare picture, as well as the clasfound therein suggests that our derived continuum hyperdif-
sical SOC numerical sandpile moddl6,7], Lu and co- fu_3|on has indeed “captured” the essence of the spatially
workers have developed a sandpilelike SOC avalanchdiscrete avalanche model. We conclude in Sec. V by specu-

model applicable to solar flarék8,9], hereafter Lu-Hamilton 1ating on the possible connections between the hyperdiffu-
91 (LH91) and Lu-Hamilton-McTiernan-BromuntLHMB ) sive threshold-triggered transport and magnetic reconnection

respectively: see also Reflt,10)). In their models the dy- in the high electrical conductivity, magnetically dominated
namical variable is some measure of the magnetic field detoronal plasma.
fined on a lattice, and the model differs from the “canonical”

sandpile models in defining its stability criterion in terms of II. CONTINUUM LIMIT OF THE
the fieldcurvature(more on this in Sec. Il below:; for a recent CURVATURE-TRIGGERED
review, see also Ref11]). Although it belongs to a different AVALANCHE MODELS

universality clas§12], this variation of the sandpile model As with most sandpile models, the LH9and LHMB)

behaves much like the better-known height- or gradienty,, o2 che model employs a stability criterion and a redistri-

trigger(_ad versions of the gandpil_g model, in that it i_S natly, ion rule to evolve a field variable defined on a discrete
rally driven to a self-organized critical state characterized bMattice subject to the action of a random driver operating

avalanches with a power-law size spectrum. - :
. ___only when the system is not avalanchitibe so-called slow
The basic LH91/LHMB avalanche model has met with d[iving limit). However, and in contrast to the classical sand-

remarkable success in reproducing the observed statisticg|ie moqel, the stability criterion is defined in terms of the
properties O.f sqlar flares. The power-law form of .the fre'Iocal curvatureof the field, rather than its height or gradient.
quency distribution of observed flare parameters arises naliy,, 5 scalar fieldh defined on a one-dimensional lattice, the
rally from the self-similarity characterizing the avalanching stability measure is thus expressed in terms of '
process in the SOC state. Moreover, most logarithmic slopes
predicted by the model are in reasonable agreement with 1

their observationally inferred counterpaf@;11,13,13. For AA=AT- 5 > A D
the present, the most serious discrepancy is the power-law J=id

index of the frequency distributions for the flaring area; the |AA| at nodei is larger than a prespecified critical value
model power-law distribution is significantly flatter than ob- A., thenA will redistribute according to

servationg 15]. While these most recent results pose a seri-

ous challenge to the nanoflare mechanism of coronal heating, hil oan 2 n

the avalanche model inspired by Parker’s physical picture of A=A §AAi : (29
photospherically stressed, complexly tangled coronal mag-

netic field remains a very promising explanatory model for 1

flares, in general. AMTI=AN 4+ §AA{‘, (2b)

These successes motivate further exploration of the mod-

el’s behavior, and, in particular, on those aspects of the, the LH91 modeling framework. The total is conserved
model that influence the power-law slopes of the size distriy, the process of the redistribution, and the local curvature
butions of avalanche parameters. Various authors hangi becomes O after the redistribution.

pointed out that the redistribution rules of the flare avalanche According to this redistribution rule, and under the as-

model amount to a transport of the dynamical variable akirbumption of synchronous nodal updating, each node is sub-

to a diffusionlike proces$10,16—18. Since assorted high- ject to three individual increment/decrement operations in a
order diffusion-type equations are well known to exhibit self- region where contiguous nodes are avalanching:

similar solutions characterized by self-similar avalanching

behavior(see, e.g.[19-22), further exploration of the anal- w1 oan 21 1,

ogy between thédiscrete avalanche model an@ontinuum A=A AATH ZAAL S AAL . Q)
high-order diffusive systems is warranted. This is the pri-

mary purpose of this paper. In Sec. Il, we begin by reversg et A"=[Al"], so that Eq(3) can be expressed in the equiva-
engineering a fourth-order continuum hyperdiffusion equaient matrix form

tion, whose discretization by centered finite differences leads

to update rules identical to the redistribution rules of the ne1 an. 2 N

LH91 avalanche model. We then perform a von Neumann ATT=AT=— §[S][S]A ' )
stability analysis of this hyperdiffusion equation. This allows

us to clarify some subtle behavioral differences between thavhere
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4 LH91, step=1661500 " LH91, step=1661700 FIG. 2. Two snapshots of the scalar nodal
N A '(a) 3.0x10 ' ' ' ' ® field A in a one-dimensional LH91 avalanche
1oxt0tf 1 20107} 3 model run. The system rapidly becomes unstable
8.0x103F 1 tox10”k shortly after it begins avalanching, and long be-
' fore reaching the SOC state which here is char-
< 6.0x103} ‘ _ 0 acterized by a parabolic profile kas shown by
woxio3t 7 1 Z1oxio” the dotted line in pandh). Panelsa) and(b) are
3 " 200 iterations apart. The model was initialized
2.0x10%/ 1] —R.0x10 with A=0 at all nodes, and driven with random
0 s - . . J -3.0x107 . . - . increments uniformly distributed in the range
0 20 40 60 80 0 20 40 60 80 100 [—0.4, 0.4, with the stability threshold set &
X X =T7.
1 1 ment at each node interior of a contiguous avalanching re-
[S]i,j=dii— 5 9ij+17 50 -1, (5)  gion zero according to Eq3). Therefore, in LHMB, all ad-

justments due to avalanching occur near the boundary
and g, ; is the Kronecker delta. Designate the spatial dimendetween avalanching and nonavalanching regions.
sion asx and the node interval as the unit lengtk= 1, then In stable regions of the lattice, there is obviously no re-
[S] is the second-order centered finite difference operator oflistribution of A and thus Eq(6) holds provided one sets
—1/2(52/9x?). Equation(4) is then the time-forward differ- «=0. At the boundary between the avalanching and stable

encing integration of the hyperdiffusion equation regions, however, the above derivation needs to be modified
because the redistribution has a spatial dependence. A more
IA I*A general form of Eq(3) should thus be
=Ko, (6)
ot ox
AN I=AN—4kPAAM+ 26 AAT, 261 JAAD
with k=1/6 and a unit “time step”At=1. Therefore, re- (89
peated application of Eq$2) in an avalanching portion of
the lattice is equivalent to a finite difference integration of ; 2 A2
o : Ky If AA>AZ
the hyperdiffusion equatiofb). K= o (8b)
Carrying out a standard von Neumann stability analysis 0 otherwise
[23], on Eq.(4), yields the following amplification facta(p)
for this scheme: where k, is equal to 1/6 for the original LH91 formulation.

Equations(8) can be formally viewed as a finite difference

At .
p=1-— 4Km(coskAx— 1)2. 7) equation for
For unit temporal and spatial intervals ard-1/6, maxp| i K(A2) Vel (9)

=5/3. Therefore, the finite differenad) is unconditionally
unstable. This has been verified in our numerical experiment
using LH91, as shown in Fig. 2. The parabolic cufsetted where K(A)Z(X) indicates that the diffusion coefficiert is a
in the plot is an approximation to thefield in the SOC state function of the value of local curvaturdZ, (the absolute
obtained from LHMB, where the threshold is set to the same&alue|A,,| is not used because it may not be differentiable
value as in this LH91 modelX.=7). It is seen from Fig. 2 However, the subgrid feature afin Eq. (8) is not given by
that LH91 becomes unstable shortly after it begins avalanchthe avalanche model and is implicitly scale dependent. To
ing and the system is still far from the SOC state. This nufurther study the avalanche system in the continuum limit, it
merical instability can be easily corrected by reducing thes thus necessary twonstructa « that approximates the dis-
diffusion coefficient from 1/6 toa/6 (a<1), which is  crete step functioii8b) (e.g., a hyperbolic tangent functipn
equivalent to reducing the redistributed quanfityA in Eqs.  As can be seen in later discussions, the detailed formisf
(2)] by a factora. In view of Eq.(7) above,« should be less not important in studying the statistical features of the sys-
than 3/4 to ensure stability. Numerical experiments using théem.
LH91 formalism but with reduced redistribution were con-  Equation(9) can also describe more general systems with
ducted, yielding now a stable algorithm and a solution build-varying diffusion coefficientgvarying redistribution inside
ing up to abona fideSOC state. avalanching regions, such as LHMB. For LHMBx

In the LHMB model, the stability criterion is the same as = 1/\/(4°A/9x?)? inside an avalanching regidiut not near
that in LH91, but the redistribution is reduced frqhA| to  its boundaries so the net diffusion there is zero. That the
A.. This is equivalent to multiplying a factoA./|AA|,  two systems, modified LH91 and LHMB, can be described
which is less than 1 in avalanching regions, to the redistribby the same equation is consistent with the fact that both the
uted quantity. The numerically stable behavior of the LHMB systems display SOC behavior with similar statistical fea-
model is thus consistent with the above analysis. In fact, théures. Both model variations belong to the same universality
introduction of this reduction factor makes the net adjust<lass, and the detailed form a(Aix) is largely irrelevant.
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Assuming tha‘rx(A)z(x) is second-order differentiable with tical mean of the total “energy” of the system becomes a

respect toAiX, Eq. (9) can be rewritten as constant and the overall curvature of the system remains
close to the critical valué\;. All of the following analyses
dA I*A &zAix &ZAEX will be based on SOC lattice solutions having reached this
gt K E T K T Ke (100 statistical equilibrium.
where «; are all functions ofAZ,. This equation thus de- 1. DYNAMICAL RENORMALIZATION-GROUP
scribes the diffusion of the firstlinean, third, and fifth ANALYSIS OF THE SYSTEM

power of the curvature on a spatial scale of the order of the Equipped with Eq(11), we hope to understand the self-

grid size(unit 1) for the avalanche model. Our goal, charac-ganized critical behavior of the avalanche models LH91
teristic of the study of critical phenomena, is to derive the, 4 | HvB by analyzing the critical dynamics of its con-
large-scale statistical features of the system and the scaling, ,,m limit. As mentioned in Sec. |. the various power-law

behavior ofA and «; from Eq. (10) that describes thiocal  jqices may be related to the invariants of DRG transforma-
behavior of the avalanching system. The form of the equagion of the system. In this section, we will determine the
tion will be the same in the process of scale transformation,, 4 riants in the DRG transformation of E(LD).

while the details(i.e., higher wave number components Before the DRG analysis, it is necessary to conduct one

the coefficients are irrelevant. For example, the exact diffui,ore transformation on Ed11) to remove the second-order

sion coefficient can be highly variable among the latticeyeriyative of the cubic nonlinear term, so that the perturba-
grids and between time steps in the avalanche model. HoWje cajculation of the nonlinear terms could be carried out

ever, the associated high wave number and high frequency,n eniently. To achieve this transformation, we take

components will be eliminated in the process of coarse graingecond-order derivatives with respectx@f both sides of

ing and thus become irrelevant for the study of the IargeEq_ (11) and replaceh,, with a new field variableB. Equa-
scale behavior. For this study, we will focus on the cubic;,, (11) then becomes

nonlinear term, study its correction to the hyperdiffusion

term, and omit the fifth-order nonlinear term. With these con- JB B ¢'B®

siderations and also taking into account the random driving St Vad M od TR (12

of the system, the following equation can be constructed to

represent the curvature-triggered avalanche system in theith B=A,,. On local scales, there should be extra terms

continuum limit: with first-and second-order derivatives ofand N on the
right-hand side(rhs of the equation. However, only the
JA J*A &ZAfX small wave number and low frequency components are of
STV od M2 TFR (1) interest in the DRG analysis, and it is assumed that the de-

rivatives of v and \ are relatively small and consequently
wherev is the hyperdiffusion coefficient andis the nonlin-  dropped from the equation. An additional benefit of this
ear coupling coefficient:g is a random driving that will be transformation is that the current random driving teffm,
defined in spectral space in the following section. It shoulds now free of any dc component.
be noted here that, in the avalanche modglsi91 and Following the procedures prescribed by Rdf84] and
LHMB), the mear(dc componentof the random driving isa [25] [Foster-Nelson-StepheiFNS) hereaftef, the DRG
nonzero constant so that a mean field builds up. It is chara@nalysis is carried out in spectral space. First, 8@) is
teristic of these systems that a statistical equilibrium be~ourier transformed with respect xoandt and can be writ-
reached after a certain number of iterations when the statisen as

—iwé=—vk4I§—Ak4J B(kq,w1)B(Ky,w)B(k—k;—ky,0— 01— wy) —k?F(k, o), (13
ky201 2

or equivalently as

G(k,w)= —

otk (19

B(k,w)=—G(k, 0)k?f(k, ) — G(Kk, w)\k*

N N wherek; , and w , indicate the domain of integration on
ka B(ky,1)B(kz, @) wave numbers and frequencies stemming from mode cou-
L2012 pling due to the cubic nonlinearity of E¢12), and the hat
X B(k—k;—ky,0— 01— w5), (14) ~ denotes the Fourier transform of the corresponding quanti-
ties. The ac component of the random driving is now defined
whereG is the propagator as
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—_—— = G X = f @
. ﬁ: —»— +3 (a)

o = M — 0 = <ff>
@ = @ (b)

Y = [aarrey —@— = <ff
O— = =0 ©

# = GI @ == —}\,Ik4

FIG. 4. Diagram expression of the first Kraichnan-Wyld ap-
proximation;(b) and(c) simply indicate that there is no renormal-

Spectral Equation for B ization of either the force coefficient or the vertex function, the

X latter by assumption in keeping with the case where Galilean invari-
= = X+ ance prevails.
4 The intermediate propagat@' can be obtained from dia-

_— : ) gram equation in Fig. @),
FIG. 3. Definition of the diagram elements. The diagram expres-

sion of Eq.(14) is also given. 1 1

I -
G G 1+3AMk* —iw+(r+3AxM)k*’ (18)
(f(k,w)f(k',0"))=27Dk™ "S(k+ k') (w+ "), ) ]
(1)  WhereM is the mean square displacement
o 4/% Fx
whereD measures the strength of the random driving corre- - L A KTk, )" (k,))

. - . . M 2 dk| do— 21,8
lation. For the uniform random driving used in the present (2m)=Je'a Jo 0"+ (v+3AM)TkK
avalanche models,=0. However, in the models the random N Dk-"
driving is applied only during periods when the system is not — f dk ’ (19)
avalanching, which creates a separation of time scales be- e'a v+3AM

tween avalanching and driving. The random driving defined ) ) )
here is convenient for our analysis, but it imposes a certaif"d thé denotes complex conjugation. Equatid®) can be
limit on the frequency range over which the analysis is ap_solved forM, after which the intermediate diffusion coeffi-

plicable, as further discussed below. cient»' can be found from Eq(18),
The DRG analysis is primarily concerned with the long (-1 _
wavelength modeK—0) behavior of the system in the pro- | v 14+3p2———— A" f r#1
cess of coarse graining. In the Fourier transform above, there V= r-1 , (20
is a short wavelengtlilarge k) cutoff at a nominal wave v(1+3p%) if r=1

numberA. In the process of coarse graining, the system from

A to e”'A (1>0), one needs to examine the correctionswhere

introduced by the components in the wave number shell

e 'A<|k|<A on the coarse grained system, specifically, the JAD

corrections to the propagator, the nonlinear coupling coeffi- P=— (22)
cient\, and the random driving correlation, in wave number

spacelk|<e™'A. The corrections to these quantities can beand Eq.(20) is obtained by Taylor expanding one of the
calculated perturbatively using a diagram method similar teexact quadratic solutior(she other one corresponds to a near
those used in FNS and in RdR6] (HK92 hereafter. The  zero solution and retaining the second order gnNote that
elements of the diagrams and the diagram equivalence of Ethe parametep is akin to a Reynolds number and is the
(14) are defined in Fig. 3. Equatiofi4) is, however, cubic dimensionless control parameter of the problem. Equation
nonlinear rather than quadratic nonlinear as in FNS and@20) also manifests the fluctuation-dissipation theorem for
HK92, and the so-called first Kraichnan-Wyld approximationthis system, with the diffusivity modified by the random
has been used to determine the perturbation expansion, fadriving through nonlinear coupling.

lowing Ref.[27]. This is shown in Fig. 4. We note that the  The wave numbek should then be rescaled in such a way
vertex equatiorfFig. 4(b)] is an approximation rather than that the wave number “sphere”<0|k|<e™'A is rescaled
being accurate to all orders as in HK92. This is because Edack to 0<|k¢ <A, and in physical space this corresponds
(12) is not Galilean invariant, although E¢L1) before the to x=e'x,. With this rescaling, we assume that the tite
derivative transformation is. Diagram equations in Figs) 4 and the fieldB scale as

and 4b) correspond to

t=et, (223
= 17
A=h (173 B=e%Bq, (22b)
D'=D. (17 or equivalently in spectral space
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w=e ey, (239
B=elc1tc2tDIg (23b)
and the random forcing scales as
foellrraronal (24)

Rescale Eq(13) using Eqgs(23) and(24) and, by balancing
the dimensions, the scaling of A\, andD can be found to be

ve=rvellr 4, (253
)\S:)\e(cl+2C2_4)|, (25b)
DSZDe(C1_262+r_5)I. (250)

PHYSICAL REVIEW E 66, 056111 (2002

ci—4 ifr=si
1 dVR_ 30
VR dl N ( )

€

> if r>1

C,—4+

With the recursion relations afgz, Ag, Dr, andpg, itis
possible to compare the behavior of the diffusion term, non-
linear term, and the random driving in the process of DRG
transformation for the two universality classes. With its role
analogous to a Reynolds numbeg's attractor at 0 when
€<0 in DRG transformation indicates the increasing domi-
nance of the diffusion termg, while the nonlinear term and
the random driving are “absorbed” into the diffusion term.
Let A\g andDg remain fixed in the DRG transformation, then
the scaling exponents, andc, can be determined from Egs.

(27),

The corresponding recursion relations can then be found by

combining Eqs(17), (20), and(25). Forr+#1,

1— e—(r—l)l
VR= Ve(cli4)| l+3p§T , (26@
)\R:}\e(cl+2c274)ll (26b)
DR:De(clfzchrrfS)l_ (260)

erepr=p-€ B rom egs. an . becaus IS a
Herepa=p?e" V) from Egs.(21) and(25). B e\i

reference wave number, it has been set to 1 here for conv
nience and without loss of generality. The differential recur-

sion relations fox andD are thus

L oc,-a 27
Ng dl - Cct2cem4, (279
1 dDg

=C,—2Cy+r—05. (27b

Dy dI
From Eqgs.(21), (263, and(27), the recursion relation fasg
is found to be

dpR €

W:PR< 5 3p&| (28

(319

(31b

Then from Eq.(30) it is found thatvg increases exponen-
tially at the rate— /2 whene<0, confirming the increasing

gominance of the diffusion term. On the other hand, the ran-

dom driving becomes critically more dominant in infrared
(k—0) whene>0, andpg’s attractor atye/6 indicates that
the diffusion term becomes comparable with the other terms.
This is again confirmed by Eq30), with (1/vg) (dvg/dl)

=0, whene>0 using the exponertt; in Eq. (30). As men-
tioned before, the random driving used in LH91 and LHMB
corresponds approximately to a spectrum withO, and we

will thus focus on the universality clags<O in the follow-

ing discussions.

IV. COMPARISONS BETWEEN ANALYSIS AND
AVALANCHE MODEL

In this section, quantities predicted by the DRG analysis
will be compared with those calculated from the avalanche

wheree=r — 1. The form of this equation is equivalent to the models. The statistical features of the modified LH91 and

coupling constant equation of modein FNS, though here

LHMB are very similar, and only results from the latter are

is a function of the random driving power index rather thanpresented in the discussion.

the spatial dimensiofcf. Refs.[28], [29]).

We first examine the wave number spectrum of the scalar

Therefore,r,=1 is the crossover index that divides the field A. Figure 5 is the power spectrum &ffrom the ava-

system into two universality classes, below whjgh has a

lanche model of LHMB. The spectral slope is4 at lower

stable fixed point at 0, and above the stable fixed point is at/ave numbers. This is the value expected for a linear fourth-

recursion relation is

dpr _

ar 3pp. (29

consistent with the derived avalanctid) in the continuum
limit with a dominant hyperdiffusion term. On the other
hand, the power spectrum of the “perturbation” to the linear
diffusion field may be conveniently checked by looking at
the power spectrum of the transformed fiB@dbecause the

The stable fixed point is thus also at zero though the aplinear diffusion component o, a parabola, becomes a dc

proaching speed is proportional toyl/ The recursion rela-
tion for vg can also be determined,

component oB. From the scaling assumptidg3b), B may
be written as
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108 ——ver Spectrum of A, LIIMB According to the analysis in preceding secti@ x<* and
v~x" 2. Then the first term of, scales ax ™~ <* and the
10912 1 second term scales as 13¢4. For e<0, the first term is
| 1 dominant in the DRG transformation and,~x®
) e =x"1"¢ The fall-off energy can then be written as
w2 ]
ool ] ‘]i: chsgj Lc) , (35)
Al xC1
1072 .
1 10 100 whereg;, is a scaling function. The spectral form # can
k be found by the Fourier transfor(35),

FIG. 5. Wave number power spectrum Affrom a representa- ®
tive LHMB model run. The solution is computed for a one- JA(k w)=k (C1+2cst DG, ( Cl) (36)
dimensional scalar version of the LHMB avalanche model, defined K

here on a 100-node lattice. Driving and threshold parameters as i .
Fig. 2. Phe frequency spectrum 8§ (e.g., boundary pointcan then

be obtained by the inverse Fourier transform of this equation
with respect tc,

~ w
B(k,w)=k ™ (C1tc2t* G ( ) 32 . -
( ) KCi/’ ( ) Ji(w,xo) _ w—[1+2(c3 /cl)]GJA(Xowl/cl), (37)

Wh?reG? is a scaling func.tlon. The wallve number ?’pewumwheref‘}J is the Fourier integral of the scaling functi@y ,
of B at timet, can be obtained by the inverse Fourier trans- A A

form of Eq. (32 with respect tow, fyi(cﬁzcﬁl)GJA(yicl)eiyxowllcldy. If the statistical feature
is assumed to be independentgf(e.g., same with those at
B(k,to) =k~ (C2*DGp(tokt) =k~ GG (toko1), boundaryx,=0), thenG,;, may be considered as a constant

(B3 andthe power- Iawmdex is equal t62/3, whenr =0. This is
- e in good agreement with the fall-off energy spectrum of the

whereGg is the Fourier integral &g, f%B(Y)e'ytok 'dy. If  avalanche models over the frequency number of 3000 to
the system is in statistical equilibriunGg should be ap- 20000, corresponding to time steps of about 100-700, as
proximately independent of the sampling timgand thus  shown in Fig. 7.
alsok®t. The power spectrum @ then has an index of 3/2 The total energy dissipation can also be calculated by in-
for r=0. Figure 6 shows the power spectrumBhormal- tegratingJ,Z_\ over the whole spatial domain. We employ the
ized by k%2 from LHMB. The flatness of the normalized same limited area approximation used by HK92:
spectrum at larger wave numbers indicates that the agree-
ment is good in that region. The smallest wave number spec- -~ , . A
trum is subjected to a small wave number cutoff due to the )= J'O dxfo dx fo dxexl —ik(x=x") Na(k, @)
finite size of the spatial domain.

We then calculate the frequency spectra of fall-off energy f dkk (c1+2c3+1) (i)
and total dissipating energy, following HK92. According to 1+ (kL)% TalkC1)’
Eq. (11), the flux of A is

(38

5 wherelL is the size of the domain. Considering the low fre-
B B quency cutoff due to the finite size of the doméih Fig. 6),
Jp=—v—"\N—. (39 . L ; S
IX IX we assume that the main contribution of the integration in
Eq. (38) comes from higher wave numbers ard_f?>1. In
Normalized power spectrum of B, LHMB fact, even for wave number k€& 2#/L), the assumption is
10-000 already a good approximation becaudel)?=(2)?>1.
With this assumption, the integration above gives

1.000¢ E

g(w)zcgwf[l+2(C3+l/Cl)], (39)
0.100F

Su(k)/ k™"

again the constant, is from the integration of the scaling
0.010¢ 3 function. Forr =0, the power index of the energy dissipation
frequency spectrum is-10/9. As can be seen from Fig. 8,
this index agrees well with that obtained from the avalanche
models in the frequency range of frequency number 2000—
20000 (time steps of 100-1000 This frequency range
FIG. 6. Wave number power spectrumBhormalized byk~%2,  where the continuum limit description is valid and the DRG
for the same solution as depicted in Fig. 5. analysis applies, as shown by these comparisons, corre-
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FIG. 7. Frequency spectrum of fall-off energy in the same @

LHMB solution as in Figs. 5 and 6. Pang@) shows thnglgw spec- FIG. 8. Frequency spectrum of energy dissipation in the LHMB
trum, and pane(b) the same spectrum normalized by “~. avalanche model, for the same model run as in Figs. 5-7. RPanel

shows the raw spectrum, and pafigl the same spectrum normal-
sponds to the interacting avalanche region as categorized iyed by w 1%,
HK92. At higher frequenciesthe single-avalanche regipn
local dynamics becomes dominant and the DRG analysis beracted from the avalanche model results in the relevant spec-
come invalid, while at lower frequencieshe discharge- tral range. This spectral range where the DRG is valid is
event region the cutoff is associated with the finite size of constrained by the size of the domain on the small wave

the domain. number and lower frequency side and the size of the lattice
grid on the large wave number and high frequency side. The
V. DISCUSSION AND CONCLUSION favorable comparison also provides rigorous support to the

interpretation of the avalanche model in the continuum limit.

This study has demonstrated that the curvature-triggered We conclude this work by briefly discussing some pos-
avalanche models proposed in LH91 and LHMB are compusible links between the avalanche system and the magneto
tationally equivalent to a randomly forced fourth-order hy- hydrodynamic§MHD) physics believed to be underlying the
perdiffusion system subjected to a threshold instability, alflaring phenomenon. We start from the induction equation
though LH91 is numerically unstable. The randomly forced
fourth-order hyperdiffusive equation is thus the continuum 9,B=V X (vXB)+ V2B, (40
limit of the avalanche models. With the equation in the con-
tinuum limit, we are able to achieve a better physical andand assume that we are in a regime strongly dominated by
analytical understanding of the avalanche models. The scatbe magnetic fieldi.e., strong MHD turbulengewhich we
transformation invariants of the equation have been detettake asBy=(0,0B). In that regime, fluctuations vary mostly
mined through the use of DRG analysis. The scaling expoin the perpendicular direction, hence we &gt 0. We evalu-
nents of the spectra of certain quantities, including the wavate the Lorentz force and Ohm'’s law with these hypotheses,
number spectra of scalar fieldsandB and frequency spec- and express further that the velocity field results from an
tra of the falling-off energy and dissipating energy, as well asequilibration with the Lorentz force in the momentum equa-
the scaling of the diffusion coefficient and nonlinear cou-tion; integrating over time gives
pling coefficients, have been derived from the invariants and
are in good agreement with the corresponding quantities ex- v~ 7] X B, (41
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whereris a characteristic time of thslow) evolution of the  dence, at least in Fourier space, between @d) and the
velocity. Substituting this expression for the velocity field in partial differential equations of MHD. Recent study by Dia-
the induction equation, and furthermore assuming that pemond and Malkov also suggests hyperdiffusion in the mag-
pendicular variations are equivalent, i.@d,~d, leads to  netic reconnectiohi34].

a model equation that reads We also note that the Lu-Hamilton interpretation of the
- 5 5 avalanche model for MHD in terms of curvature of the field
B~B“9°B+dBIB"+ 77d°B. is not to be taken too stringently. The model encompassed in

Eqgs.(41)—(44) with a turbulent resistivity coefficient involv-
ing the current itself in the strong field regime shows how
9B~ (B%+ 7)d°B+ 9°B2. (42)  important magnetic field gradients are, irrespective of their
being a signature of curvature or not. Indeed, in a standard
We now need to compare this with the modal). Both  two-dimensional configuration, corresponding to reconnec-
include ag?B® term, but at first glance the first term on the tion events embedded in a strong background field as in the
rhs of Eq.(42) is not comparable to the fourth-order term on corona and as the lowest-order approximation to reduced
the rhs of Eq(11). MHD, neutral x points develop into x lines and current
In an attempt to resolve this discrepancy, we turn to thesheets have a tendency to be straight as shown in numerous
theory of strong MHD turbulencée.g., Ref.[30]). In the  numerical simulation$31-33.
solar corona, the magnetic Reynolds number is extremely If taken at face value, what physical conclusions can be
high, and magnetic reconnection is thus likely to generatglrawn from this correspondence? First and foremost, it im-
turbulence. The linear part of the diffusion termg?B, can  plies that the reconnection dynamics is dominated by the
be modified by introducing an eddy diffusivity,,,, the  magnetic field[viz., Eqg. (41)]. Second, once reconnection
latter computed using two-point closure formulations ofdoes occurs, strong MHD turbulence rapidly sets in and
strong isotropic(on average MHD turbulence[30]. It was ~ dominates transport processes in and out of the reconnection
found there that the only contribution from small-scale fluc-regions. Third, the hyperdiffusivé.e., fourth-order charac-
tuations to dissipation of the large-scale magnetic field sterter of field dissipation suggests that once reconnection sets

from the velocity field, averaged on small scales andn, itis very efficient at dissipating the magnetic field even if
squared, namely the magnetic Reynolds number is very large. Conceptually at

5 least, these conclusions are all compatible with current ob-
Db~ (V). (43 servational inferences and theoretical understanding of solar
es.

This is readily rewritten in the form

As argued above, in the strong field regime characteristic O]}Iar
the corona, the velocity field results from a balance with the

Lorentz force and hence is proportional to the current, i.e., to ACKNOWLEDGMENTS
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